
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Invasion percolation with temperature and the nature of self-organized criticality in real systems
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2INFM-Unità di Roma 1 ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, 00185 Roma, Italy

~Received 26 August 1999!

In this paper we present a theoretical approach that allows us to describe the transition between critical and
noncritical behavior when stocastic noise is introduced in extremal models with disorder. Namely, we show
that the introduction of thermal noise in invasion percolation~IP! brings the system outside the critical point.
This result suggests a possible definition of self-organized criticality systems as ordinary critical systems where
the critical point corresponds to set to 0 one of the parameters. We recover both the IP and Eden models for
T→0 andT→`, respectively. For smallT we find a dynamical second-order transition with correlation length
diverging whenT→0.

PACS number~s!: 05.40.2a, 62.20.Mk, 02.50.2r
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The spontaneous development of complex and fra
structures has been studied on the basis of several mo
manifesting self-organized criticality~SOC! @1#. This con-
cept is very intriguing and its very meaning has been hig
debated. For instance, it has been noticed that the comb
tion of different properties as, for example, stochastic no
and quenched disorder, usually destroys criticality. A
difficulty in order to clarify the real nature of SOC is th
distance between the enormous amount of numerical re
and the poor developement of systematic theoretical to
able to derive the average critical properties of the mod
directly from their formulation. Interesting theoretical a
proaches to SOC can be found in@2# and in @3#.

In this paper we present a probabilistic approach to st
systematically the effect of a stochastic noise on the spa
temporal correlations of SOC models with quenched dis
der. This method is calledgeneralized run time statistic
~GRTS! and generalizes for astocasticdynamics the run
time statistics~RTS! approach. Namely, the latter one h
been originally formulated for the case ofdeterministicex-
tremal dynamics in quenched disorder@4# as invasion perco-
lation ~IP! @5#. This generalization is very important becau
it allows us to study correlations and memory effects indu
by the quenched disorder of the medium in any quasist
stochastic growth process. In order to make clear the imp
tance of this approach, we consider here one of the clas
models of self-organization, the IP model. IP describes
displacement of a fluid in a disordered net of random thro
due to another immiscible fluid pushed with a vanishi
pressure rate. In this paper we study this model when a t
peraturelike noiseT is present. This generalization is impo
tant since through GRTS we can describe a more real
case, where stochastic fluctuations affect the dynamic
invasion. Moreover, we can study analytically the robustn
of SOC with respect to external solicitations@6,7#. The main
result is that for any stochastic~thermal! noise a finite cor-
relation length appears and the criticality is destroyed. T
suggests a possible definition for SOC phenomena in
systems:a system or a dynamical process is SOC if the cr
cal value of the driving parameter is0, instead of another
real number. This idea supports a similar view developed
@8#. The reason why such a value makes such a large di
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ence is because the driving parameter of these proces
always a ratio~grain of sand added with respect to the to
number of sites for the sandpiles, sites whose ‘‘value’’
changed for IP, DLA@9#, Bak and Sneppen~BS! @10#, etc.!
and any value smaller than a certain threshold can be c
sidered equal to 0. For this reason zero occupies a m
larger region of the phase space than any other real num

Let us recall the definition of the IP model@5#. In a lattice
of size L a random numberxi , extracted from the uniform
density p0(x)51 for xP@0,1#, is assigned to each bondi.
Let us callCt the cluster of invaded bonds at timet ~a finite
connected setC0 is fixed arbitrarily!, and]Ct the interface of
the clusterCt . ]Ct is the set of bonds not invaded but
contact withCt . At time t the bondi P]Ct with the lowestxi
is invaded and added to the clusterCt : Ct115Ctø$ i %. The
interface is consequently updated. The dynamics is repe
and stops when the cluster percolates the lattice.

This simple growth model develops spontaneously g
metrical and dynamical critical features:~1! The asymptotic
cluster is a fractal~i.e., it has an infinite correlation length!
with fractal dimensionD f.1.89 in a 2d lattice, which is the
same fractal dimension of the infinite cluster of percolati
at the critical point.~2! The normalized histogramf t(x), of
the interface variables, has the following asymptotic shap

f t~x!5
1

12pc
u~x2pc!, ~1!

while the initial shape is obviouslyf0(x)51. pc coincides
with the classical percolation threshold.~3! The asymptotic
dynamics evolves forcritical avalanches. Any bondi grow-
ing at time t is the initiator of its own avalanche. Anava-
lanche is the temporal consecutive sequence of grow
events geometrically and causally connected to the growt
the initiator ~for a detailed definition of avalanche see, e.
@11#!. Note that, in the large time limit, thex of the initiator,
due to the shape of the asymptotic histogram must bx
<pc . The size distributionD(s;x) ~wherex is the random
number of the initiator! of the avalanche has the followin
behavior:

D~s;x!5s2t f ~ssux2pcu!, ~2!
7638 ©2000 The American Physical Society
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PRE 62 7639INVASION PERCOLATION WITH TEMPERATURE AND . . .
where f (x)5c.0 for x!1 and decays exponentially forx
@1 ~i.e., for s.s05ux2pcu21/s). t51.5760.03 ands51
2t12/D f50.4960.03. Note that ifx5pc , the size distri-
bution is a power law as the characteristic sizes0 diverges
@11#. As a consequence, these kind of avalanches are c
critical avalanches.

We now generalize the IP model by introducing the pr
ence of thermal noise. Numerical studies of an analog
application to the Bak-Sneppen model@10# can be found in
@6#, whilst the case of sandpiles has been considered in@7#.
The first effect of a finite temperatureT is that the determin-
istic dynamics becomes stochastic, such that the larger is
temperature the larger is the stochasticity. The definition
Ct and]Ct in this model are the same as IP, but the grow
rule is different: each bondi P]Ct has the following growth
probability, depending on the realization of the quench
disorder:

h i ,t~$x%]Ct
!5 e2bxi

(
j P]Ct

e2bxj
, ~3!

whereb51/T and $x%]Ct
is the realization of the quenche

disorder on the interface]Ct . The larger isT the moreh i ,t is
independent onxi . Hereafter, we shall indicate withiCti the
number of bonds belonging toCt , and withi]Cti the num-
ber of bonds belonging to]Ct .

It is important to study the two different limitsT→` and
T→0. In the first limit we have

lim
T→`

h i ,t5
1

i]Cti
, ~4!

where i]Cti is the total number of bonds belonging to th
growth interface at timet. Equation~4! means that all the
bonds on the interface have the same probability to gr
This model is well known and usually called the Eden mo
@12#: this dynamical growth generates a compact clus
~fractal dimension equal to the space dimension! with a
rough surface. In the second limit we have

lim
T→0

h i ,t5 )
j P]Ct2$ i %

u~xj2xi !, ~5!

where]Ct2$ i % means the interface]Ct minus the bondi.
Equation~5! provides nothing else but the deterministic e
tremal growth rule of IP:h i ,t51 if xi is the extremal~mini-
mum! value and zero otherwise. In this paper we addr
mainly the study of the behavior for small values ofT, i.e.,
the transition of the model towards IP. In particular we w
study the case of a 2d square bond lattice. We started b
studying some Monte Carlo simulations of this model. T
presence of the temperature introduces a characteristic le
j(T), the effect of which is quite clear in Fig. 1 where pe
colating clusters for different values ofb51/T are shown.
The differences between the clusters can be explained
characterizing qualitatively the dynamics of growth.

For any value ofT, a characteristic timet* (T) exists such
that, for t,t* (T) the dynamics of the model is the IP dy
namics, i.e., even if the dynamical rule given by Eq.~3! is
not deterministic, the effect of stochasticity is still negligib
ed
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and the effective dynamics is almost extremal. On the ot
hand, fort.t* (T) the effect of the stochastic noise begins
be more and more important and the deviation from IP a
then from fractality, becomes larger. If we suppose thaT
!1, and thent* (T)@1, it is clear thatt* (T) represents the
correlation time of the system. Since one bond is remo
for each time step,t* (T) represents also the number
bonds s0(T) in a correlated region of the cluster whent
@t* (T). This is in agreement with the idea that atT.0 IP is
the repulsive fixed point of the dynamics under a spa
temporal coarse-graining transformation, and the Ed
model is the trivial attractive fixed point characterized byT
→`. These features can be checked by looking at the
namical evolution of the histogramf t(x). Obviouslyf0(x)
51; for t,t* (T) as previously noted, the evolution is th
same as the IP, that isf t(x) evolves in the step function
given by Eq.~1!. At t5t* (T), f t(x) is a smoothened ste
function ~the size of the smoothened interval aroundpc in-
creases withT). For t.t* (T), because of stochasticity, th
growth of bonds withx much larger thanpc are permitted
and the histogramf t(x) shifts towards high values ofx. We
have measured through simulationst* (T) by measuring the
time step whenf t(x) start to shift and we obtain the scalin
law t* (T)[s0(T);T2g with g51.960.2. In the following
we find the same behavior theoretically and we link it to t
correlation length of the structure.

To study the model, we formulate the generalization
stochastic growth dynamics of the run time statistics~RTS!
@4,13# that we call generalized run time statistics~GRTS!.
The usual RTS is a probabilistic technique based on the c
cept of conditional probability, introduced to study IP-lik
dynamics, i.e., deterministic extremal dynamics w
quenched disorder. With the GRTS approach we can so
the following problem: suppose we fix the time-ordered p
Ct followed by the dynamics, and we ignore the realizati
of the disorder: then we can compute the joint probabi
density functionPt($x%]Ct

) of all the variablesxi of the

bonds i belonging to the interface]Ct , conditioned to the
history Ct . Furthermore, we can compute the condition

FIG. 1. Different percolating clusters for different values ofb
51/T in a lattice of linear sizeL5100. The ‘‘fractality’’ increases
with b.
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probability of the next growth steps. This joint probabili
density function~PDF! Pt($x%]Ct

) plays a central role, since
from it we can compute the probability~conditioned to the
whole past history, i.e., to all the previous steps of the pa!
of any possible next growth step. After that, we update c
sequently the joint probability density itself obtainin
Pt11($x%]Ct11

). Here we expose an approximated version
GRTS. The approximation consists of assuming that at
time step the PDF can be written as the product of sing
bond density functionspk,t(xk)

Pt~$x%]Ct
!5 )

kP]Ct

pk,t~xk!.

This means that one is assuming that all the informat
about the history can be contained in the set of effec
single-bond density functions. Usually this is not the ca
one can show that the information about the dynamical
tory generates correlations among the interface varia
@14#. However, it can be seen@15# that this approximation
works very well even for IP where the the effect of th
correlation, because of the extremal nature of the dynam
is the maximum.

Starting from the PDF’s we want to compute the con
tional probability m i ,t that a certain bondi P]Ct grows at
time t. Let us suppose we know the ‘‘effective’’ one bon
PDF pk,t(xk) for eachkP]Ct . The functionspk,t(xk) are
determined by the whole past history up to timet @obviously,
for t50 eachpk,t(x)5p0(x)51 as there is no information
yet on the dynamics#. Knowing the functionspk,t(xk), the
conditioned probabilitym i ,t are given by

m i ,t5E
0

1

. . . E
0

1

)
k]Ct

@dxkpk,t~xk!#
e2bxi

(
kP]Ct

e2bxk

. ~6!

The set ofm ’s, for eachi P]Ct , provides the growth prob
ability distribution~GPD! conditioned to the past dynamica
history up to timet. For each of these growth events, we m
update the old effective PDF’spk,t(x), ‘‘conditioning’’ them
to the knowledge of the last step at timet. In order to do that,
we have to distinguish three cases:~a! the last grown bondi,
~b! the other bondsj belonging to]Ct , and finally ~c! the
bonds just entered in the new interface]Ct11 because of the
growth of i.

~a! In this case,i does not belong to]Ct11. For this rea-
son, we use the new symbolmi ,t11(x) for its PDF at time
t11,

mi ,t11~x!5
1

m i ,t
E

0

1

. . . E
0

1

)
k]Ct

@dxkpk,t~xk!#

3
e2bxi

(
kP]Ct

e2bxk

d~xi2x!. ~7!

~b! In this case we have
-
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pj ,t1 i~x!5 1
m i ,t

E
0

1

. . . E
0

1

)
k]Ct

@dxkpk,t~xk!#

3 e2bxi

(
kP]Ct

e2bxk
d~xj2x!. ~8!

~c! Finally, pj ,t1 i(x)5p0(x)51; let us callni ,t the num-
ber of these bonds. Note that the following relations ho
iCti5t and i]Ct11i5i]Cti1ni ,t21. Hereafter we callV t
andnt the average values, over different dynamical reali
tions, respectively, ofiCti andni ,t .

Using Eqs.~6!–~8! and the rule that bonds just entered t
interface have simplyp0(x)51 as an ‘‘effective’’ density
function, we can describe from a conditional probabil
point of view any possible dynamical history, knowing on
p0(x) and the dynamical rule given by Eq.~3!. In @13,16# the
T50 case of GRTS was formulated and used to study
evaluating bothD f andt. Now we use this generalized ap
proach to study the transition towards IP~stochastic-
extremaltransition!. First of all the histogramht(x) is intro-
duced.ht(x) is the distribution ofx’s on the interface at time
t. That is,ht(x)dx provides the number of interface bonds
time t with x belonging to th intervall@x,x1dx#.

If we fix a dynamical history up to timet, we can write

ht~x!5 (
i P]Ct

pi ,t~x!,

where the functionspi ,t(x) must be evaluated through th
algorithm provided by Eqs.~6!–~8! for the fixed history.
Note that*0

1dxht(x)5i]Cti . Since the disorder is quenche
the dynamical equation forht(x) is

ht11~x!5ht~x!2mi ,t11~x!1ni ,tp0~x!. ~9!

It is convenient to study the normalized histogramf t(x),
defined asf t(x)5ht(x)/i]Cti . Since~as for IP! f t(x) is an
almost self-averaging quantity for smallT, we can take the
average of Eq.~9! over all the possible histories in order t
evaluatef t(x). After some algebra and approximations, o
can write the following equations:

V t11f t11~x!5V tf t~x!2V tf t~x!
1

11V te
b(x21/nt)

1nt ,

~10!

where V t115V t1nt21. To obtain Eq.~10!, we have as-
sumed thateb@V t@1. Clearly the dynamical evolution o
the histogram is strictly related to that ofnt ; in IP for t@1
we havent.1/pc @4#. Because of the quasistaticity of th
dynamics, the evolution off t(x) is very slow @i.e.,
uf t11(x)2f t(x)u/f t(x)!1#. Consequently, from Eq.~10!
for t@1, we can write approximatively

f t~x!.
nt

nt211
1

1

V t
1eb(x21/nt)

. ~11!
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f t(x) is a smoothened step function aroundx51/nt with
Dx;T. For t5t* (T)@1 we use the IP relationnt.1/pc ,
since dynamics is IP-like@13,17#. Then

f t* ~x!.
1

12pc1
pc

1

V t*
1eb(x2pc)

. ~12!

FIG. 2. Different histograms att5t* (T) for three different val-
ues of b51/T (510,50,100). The three top figures provide t
histograms in the whole intervalxP@0,1#; the three bottom ones
provide the same quantities in the reduced windowxP@0.45,0.55#.
The largerb is the more IP-like the histogram is. The dashed li
represents Eq.~12!; numerical data are represented by empty circ
connected by a filled line.
s.
This function differs from Eq.~1! only in an interval of ex-
tensionDx;T just aroundx5pc . The agreement betwee
this function and the numerical data is very good for a w
range ofT ~Fig. 2!. Note that the relationnt.1/pc is true at
any time (t@1) only in the caseT50. ForT.0, because of
stochastic noise,nt→1 for t@t* (T) and the cluster become
compact ~it can be shown thatnt21 represents the
asymptotic value of the ratio between the interface num
i]Cti and the cluster numberiCti).

From Eq.~12! and from the exponents of IP, we can o
tain the behaviors ofs0(T) and j(T) at small T. In IP an
avalanche, with an initiator withx5pc2Dx, has a typical
sizes0(Dx);Dx21/s. Here we have a natural valueDx;T
even for the maximal sequence of correlated growth eve
Hences0(T);T21/s5T2g with g52.060.1 in agreement
with the simulations. For the fractality of IP, we hav
s0(T);j(T)D, hence j(T);T2n with n5g/D51.10
60.05.

In conclusion, we presented here a general probabili
approach, the GRTS, for a quasistatic stochastic dynam
model in a medium with quenched disorder. Through t
method we study memory effects and temporal correlati
induced by the disorder. In particular, we describe the
model where a temperaturelike parameterT is introduced.
Through the GRTS it is found that the larger the stocha
noise, the lower the memory effects and the weaker the g
metrical correlations developed during the dynami
Namely, the model produces structures that are fractal
self-organized only by tuning this parameter to 0, otherw
a finite correlation length exists. This behavior~similar to
that observed for the BS model Ref. 11 in@6#! supports the
hypothesis that SOC models are closely related to ordin
critical systems, where parameters have to be tuned to t
critical value.
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