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Invasion percolation with temperature and the nature of self-organized criticality in real systems
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In this paper we present a theoretical approach that allows us to describe the transition between critical and
noncritical behavior when stocastic noise is introduced in extremal models with disorder. Namely, we show
that the introduction of thermal noise in invasion percolaiiht) brings the system outside the critical point.

This result suggests a possible definition of self-organized criticality systems as ordinary critical systems where
the critical point corresponds to set to O one of the parameters. We recover both the IP and Eden models for
T—0 andT— o, respectively. For small we find a dynamical second-order transition with correlation length
diverging whenT—0.

PACS numbd(s): 05.40—a, 62.20.Mk, 02.50-r

The spontaneous development of complex and fractaénce is because the driving parameter of these process is
structures has been studied on the basis of several modedsvays a ratio(grain of sand added with respect to the total
manifesting self-organized criticalitySOC [1]. This con- number of sites for the sandpiles, sites whose “value” is
cept is very intriguing and its very meaning has been highlychanged for IP, DLA9], Bak and Sneppe(BS) [10], etc)
debated. For instance, it has been noticed that the combinand any value smaller than a certain threshold can be con-
tion of different properties as, for example, stochastic nois&idered equal to 0. For this reason zero occupies a much
and quenched disorder, usually destroys criticality. A biglarger region of the phase space than any other real number.
difficulty in order to clarify the real nature of SOC is the  Letus recall the definition of the IP modéd]. In a lattice
distance between the enormous amount of numerical resul@f sizeL a random numbex;, extracted from the uniform
and the poor developement of systematic theoretical toolgensity po(x)=1 for xe[0,1], is assigned to each borid
able to derive the average critical properties of the modeléet us callC; the cluster of invaded bonds at tirh¢a finite
directly from their formulation. Interesting theoretical ap- connected set is fixed arbitrarily, anddC;, the interface of
proaches to SOC can be found[®2] and in[3]. the clusterC,. dC; is the set of bonds not invaded but in

In this paper we present a probabilistic approach to studgontact withC, . Attimet the bond e dC, with the lowesi;
systematically the effect of a stochastic noise on the spatios invaded and added to the clus@y: C,,;=CU{i}. The
temporal correlations of SOC models with quenched disorinterface is consequently updated. The dynamics is repeated
der. This method is calledeneralized run time statistics and stops when the cluster percolates the lattice.

(GRTS and generalizes for atocasticdynamics the run This simple growth model develops spontaneously geo-
time statistics(RTS) approach. Namely, the latter one has metrical and dynamical critical featured) The asymptotic
been originally formulated for the case déterministicex-  cluster is a fractali.e., it has an infinite correlation length
tremal dynamics in quenched disordiét as invasion perco- with fractal dimensiorD;=1.89 in a 2l lattice, which is the
lation (IP) [5]. This generalization is very important becausesame fractal dimension of the infinite cluster of percolation
it allows us to study correlations and memory effects inducedt the critical point(2) The normalized histograns(x), of

by the quenched disorder of the medium in any quasistatithe interface variables, has the following asymptotic shape:
stochastic growth process. In order to make clear the impor-

tance of this approach, we consider here one of the classical

models of self-organization, the IP model. IP describes the (x)= 1-p. 0(X=Pc), @
displacement of a fluid in a disordered net of random throats

due to another immiscible fluid pushed with a vanishingwhile the initial shape is obviously(x)=1. p. coincides
pressure rate. In this paper we study this model when a tenwith the classical percolation threshol@) The asymptotic
peraturelike noisd is present. This generalization is impor- dynamics evolves focritical avalanches Any bondi grow-
tant since through GRTS we can describe a more realistithg at timet is theinitiator of its own avalanche. Arava-
case, where stochastic fluctuations affect the dynamics dinche is the temporal consecutive sequence of growth
invasion. Moreover, we can study analytically the robustnesgvents geometrically and causally connected to the growth of
of SOC with respect to external solicitatiof&7]. The main the initiator (for a detailed definition of avalanche see, e.g.,
result is that for any stochasti¢herma) noise a finite cor-  [11]). Note that, in the large time limit, theof the initiator,
relation length appears and the criticality is destroyed. Thigiue to the shape of the asymptotic histogram mustx be
suggests a possible definition for SOC phenomena in reakp_. The size distributiorD(s;x) (wherex is the random
systemsa system or a dynamical process is SOC if the criti-number of the initiator of the avalanche has the following
cal value of the driving parameter 8, instead of another behavior:

real number This idea supports a similar view developed in

[8]. The reason why such a value makes such a large differ- D(s;xX)=s""f(s?|x—pg|), 2
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wheref(x)=c>0 for x<1 and decays exponentially for 10
>1 (i.e., fors>sy=|x—p¢ ). r=1.57+0.03 ando=1 o |5
—7+2/D;=0.49+0.03. Note that ifx=p,, the size distri-
bution is a power law as the characteristic sigediverges
[11]. As a consequence, these kind of avalanches are callec,, |
critical avalanches.

We now generalize the IP model by introducing the pres-
ence of thermal noise. Numerical studies of an analogous o)
application to the Bak-Sneppen mod&D] can be found in 4
[6], whilst the case of sandpiles has been considerdd]in
The first effect of a finite temperatufieis that the determin-
istic dynamics becomes stochastic, such that the larger is the g |#
temperature the larger is the stochasticity. The definitions of
C; anddC; in this model are the same as IP, but the growth
rule is different: each bontde ¢C; has the following growth 20

probability, depending on the realization of the quenched
disorder: 0 20 40 60 80 100 0 20 40 60 80 100
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y FIG. 1. Different percolating clusters for different values®f
e 3 =1/T in a lattice of linear sizé&.=100. The “fractality” increases

> e A with 3.

jedCy

Wi,t({x}act):

where 8=1/T and{x},c, is the realization of the quenched an( the effective dynamics is almost extremal. On the other
disorder on the interfacgC; . The larger isT the morez; ;is  hand, fort>t* (T) the effect of the stochastic noise begins to
independent ow; . Hereafter, we shall indicate witfC|| the  be more and more important and the deviation from IP and
number of bonds belonging ©,, and with||dC| the num-  then from fractality, becomes larger. If we suppose fhat

ber of bonds belonging téC; . <1, and thert*(T)>1, it is clear that*(T) represents the
It is important to study the two different limits—o and  correlation time of the system. Since one bond is removed
T—0. In the first limit we have for each time stept*(T) represents also the number of
bondssy(T) in a correlated region of the cluster whén
lim 7, = 1 4) >t*(T). This is in agreement with the idea thaffat 0 IP is

loCy the repulsive fixed point of the dynamics under a spatio-

temporal coarse-graining transformation, and the Eden
where|dC4| is the total number of bonds belonging to the model is the trivial attractive fixed point characterized by
growth interface at time. Equation(4) means that all the —. These features can be checked by looking at the dy-
bonds on the interface have the same probability to growhamical evolution of the histogram(x). Obviously ¢q(x)
This model is well known and usually called the Eden model=1; for t<t*(T) as previously noted, the evolution is the
[12]: this dynamical growth generates a compact clustesame as the IP, that ig.(x) evolves in the step function
(fractal dimension equal to the space dimengisiith a  given by Eq.(1). At t=t*(T), ¢(x) is a smoothened step
rough surface. In the second limit we have function (the size of the smoothened interval aroymdin-
creases withl'). Fort>t*(T), because of stochasticity, the
. . growth of bonds withx much larger thamp. are permitted
T“Lnoniﬁ_j Eﬁl(;[,{i} 0= xi), ®) and the histograna,(x) shifts towards high values of We
have measured through simulatiai§T) by measuring the

where 9C,—{i} means the interfacéC, minus the bond.  time step whenp(x) start to shift and we obtain the scaling
Equation(5) provides nothing else but the deterministic ex- law t*(T)=so(T)~T~” with y=1.9+0.2. In the following

T—oo

tremal growth rule of 1Pz, (=1 if x; is the extrema(mini- ~ We find the same behavior theoretically and we link it to the
mum) value and zero otherwise. In this paper we addres§orrelation length of the structure. o
mainly the study of the behavior for small valuesTofi.e., To study the model, we formulate the generalization to

the transition of the model towards IP. In particular we will Stochastic growth dynamics of the run time statistiRI S)
study the case of ad®square bond lattice. We started by [4,13] that we call generalized run time statistigSRTS.
studying some Monte Carlo simulations of this model. TheThe usual RTS is a probabilistic technique based on the con-
presence of the temperature introduces a characteristic leng®@§Pt of conditional probability, introduced to study IP-like
&(T), the effect of which is quite clear in Fig. 1 where per- dynamics, i.e., deterministic extremal dynamics with
colating clusters for different values @=1/T are shown. duenched disorder. With the GRTS approach we can solve
The differences between the clusters can be explained i€ following problem: suppose we fix the time-ordered path
characterizing qualitatively the dynamics of growth.  followed by the dynamics, and we ignore the realization
For any value off, a characteristic time* (T) exists such ~ Of the disorder: then we can compute the joint probability
that, fort<t*(T) the dynamics of the model is the IP dy- density functionP({x},c) of all the variablesx; of the
namics, i.e., even if the dynamical rule given by E8).is  bondsi belonging to the interfacéC,, conditioned to the
not deterministic, the effect of stochasticity is still negligible history C,. Furthermore, we can compute the conditioned
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probability of the next growth steps. This joint probability 1 [ 1

density function(PDP) Py({x},c,) plays a central role, since Pjt+i(X) = o o J;(I:t [dXPy,t(Xi) ]

from it we can compute the probabilifgonditioned to the _Bx

whole past history, i.e., to all the previous steps of the ypath xe—'ﬁé(xj —X). (8)
iy

of any possible next growth step. After that, we update con-
sequently the joint probability density itself obtaining
Pt+1({x}ﬁct+l). Here_ We. expose _an approxma_ted version of (0) Finally, p; 1+ i(X) = po(x) = 1; let us calln; , the num-
GRTS. The approximation consists of assuming that at anger of these bonds. Note that the following relations hold:
time step the PDF can be written as the product of singlejc || =t and|dCy, 4| =[|aC{|+ n; (— 1. Hereafter we calf),
bond density functiongy :(Xy) andn, the average values, over different dynamical realiza-
tions, respectively, ofC,| andn; ;.
Using Egs{(6)—(8) and the rule that bonds just entered the
P({X}ic)= 11 P t(Xk)- interface have simplypy(x)=1 as an “effective” density
ke Gy function, we can describe from a conditional probability
point of view any possible dynamical history, knowing only

This means that one is assuming that all the informatiorPo(X) and the dynamical rule given by E(®). In[13,16] the

about the history can be contained in the set of effectivel =0 case of GRTS was formulated and used to study IP,

single-bond density functions. Usually this is not the casegvaluating botrD; and 7. Now we use this generalized ap-

one can show that the information about the dynamical hisproach to study the transition towards Iftochastic-

tory generates correlations among the interface variablegxtremaltransition. First of all the histogran(x) is intro-

[14]. However, it can be seefi5] that this approximation duced.h,(x) is the distribution ok’s on the interface at time

works very well even for IP where the the effect of this t. That is,h(x)dx provides the number of interface bonds at

correlation, because of the extremal nature of the dynamicgime t with x belonging to th interval[ x,x+ dx].

is the maximum. If we fix a dynamical history up to timg we can write
Starting from the PDF's we want to compute the condi-

tional probability u; ; that a certain bonde dC, grows at h(x)= S

time t. Let us suppose we know the “effective” one bond t(X)—iEﬁCt pi,i(X),

PDF py ((xy) for eachke dC;. The functionsp, ((x,) are

determined by the whole past history up to tijebviously,  yhere the functiong; (x) must be evaluated through the

for t=0 eachpy(x) =po(x) =1 as there is no information  ajgorithm provided by Eqs(6)—(8) for the fixed history.

yet on the dynamids Knowing the functionspy (Xi), the  Note thatftdxh(x) = JC,. Since the disorder is quenched,

ke dCy

conditioned probability.; ; are given by the dynamical equation fdw,(x) is
1 1 e PX N4 2(X) =he(X) =My ¢4 1(X) + 1 (Po(X). 9
pam | | T im0 22— @
0 0 kaCy E e P

It is convenient to study the normalized histogra#y(x),
defined asp,(x) =h,(x)/|[dC,||. Since(as for IP ¢(x) is an
almost self-averaging quantity for smal] we can take the
The set ofu’s, for eachi € dC, provides the growth prob- average of Eq(9) over all the possible histories in order to
ability distribution(GPD) conditioned to the past dynamical evaluateg,(x). After some algebra and approximations, one
history up to timet. For each of these growth events, we maycan write the following equations:
update the old effective PDF[g ((x), “conditioning” them
to the knowledge of the last step at timén order to do that, 1
we have to distinguish three casém: the last grown bond, Q11014 1(X) = Qi (X) — Qi p(X) P TETS) +n,,
(b) the other bond$ belonging todC;, and finally (c) the 1+ 0 !
bonds just entered in the new interfa®@; , ; because of the (10)
growth ofi.

(@ In this casej does not belong taC; , ;. For this rea-
son, we use the new symbo, ;. 1(x) for its PDF at time
t+1,

ke dCy

where Q,,1=Q;+n,—1. To obtain Eq.(10), we have as-
sumed thae?>(),;>1. Clearly the dynamical evolution of
the histogram is strictly related to that of; in IP for t>1
we haven,=1/p. [4]. Because of the quasistaticity of the
L L |dynar(ni():s, t?e)“ew()lu)tion] ofy(x) is \/Ieryf slowq[(i.e.),

} _ 1 bi+1(X) — di(X) |/ di(X)<<1]. Consequently, from Eq10
M a(X)= Jo o jo k(;llt [dXPi(x)] fortt>1, Wetcan w;ite approximatively

Mit
e P
X ———— 5(Xj—X). (7) Ny
> e A Dy(X)= 1 . (1)
ke dCy n,— 1+
— 4 eBx=1hy)

(b) In this case we have (0N
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80 e0 8o This function differs from Eq(1) only in an interval of ex-

as| — P10 T ~ B=t00 tensionAx~T just aroundx=p.. The agreement between

20f Gl 20 20 f ce this function and the numerical data is very good for a wide
Zis| range ofT (Fig. 2). Note that the relatiom,=1/p. is true at
ol 1ol wh any time ¢>1) only in the cas@=0. ForT>0, because of

stochastic noise);— 1 for t>t*(T) and the cluster becomes
compact (it can be shown thatn,—1 represents the

05 | 5 )

:::o.oo 020 040 060 080 1.00::(35’6%“0*%0 060 080 1.002:20)3*03?{%% 060 080 1.00 asymptotic value of the ratio between the interface number
. pet0 . pas0 . p=100 |4C| and the cluster numbéiC|).
20| 200 e %@H From Eq.(12) and from the exponents of IP, we can ob-
_s| . 7 | s} % tain the behaviors 08,(T) and &(T) at smallT. In IP an
i-, JoN-ce /@ / avalanche, with an initiator witkk=p.—AXx, has a typical
Ploe®e” meo 10| ¢ size sy(Ax)~Ax~ Y. Here we have a natural valuex~T
o5 | st os | /@/ even for the maximal sequence of correlated growth events.
oo ‘ M@ﬁ ‘ o ‘ Hencesy(T)~T Y¥=T"7 with y=2.0+0.1 in agreement
o % 055 045 7 005 045 s 055 with the simulations. For the fractality of IP, we have

, , . So(T)~&(T)P, hence &T)~T ¥ with v=9/D=1.10
FIG. 2. Different histograms dt=t*(T) for three different val- +0.05.

ues of 3=1/T (=10,50,100). The three top figures provide the

. : . In conclusion, we presented here a general probabilistic
histograms in the whole intervade[0,1]; the three bottom ones P g P

provide the same quantities in the reduced windowf 0.45,0.55. approag;h, the G.RTS' for a quaSIStath stochastic dynam|9al
. X X . .model in a medium with quenched disorder. Through this
The largers is the more IP-like the histogram is. The dashed line thod tud ffect dt | lati
represents Eq12); numerical data are represented by empty circles'€t100 WE Study memory €eflects and temporal correiations
- ; induced by the disorder. In particular, we describe the IP
connected by a filled line. : L
model where a temperaturelike parameters introduced.
Through the GRTS it is found that the larger the stochastic
noise, the lower the memory effects and the weaker the geo-
metrical correlations developed during the dynamics.
Namely, the model produces structures that are fractal and

self-organized only by tuning this parameter to 0, otherwise

¢i(X) is a smoothened step function aroure 1/n; with
Ax~T. For t=t*(T)>1 we use the IP relation,=1/p.,
since dynamics is IP-likg13,17. Then

b (X)= ! . (12)  a finite correlation length exists. This behavigimilar to
Pc that observed for the BS model Ref. 11[#1) supports the
1=pct hypothesis that SOC models are closely related to ordinary
+ ef(x=pd) critical systems, where parameters have to be tuned to their
O critical value.
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